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Abstract Halogen bonding, a non-covalent interaction
between the halogen σ-hole and Lewis bases, could not be
properly characterized bymajority of current scoring functions.
In this study, a knowledge-based halogen bonding scoring
function, termed XBPMF, was developed by an iterative meth-
od for predicting protein-ligand interactions. Three sets of
pairwise potentials were derived from two training sets of
protein-ligand complexes from the Protein Data Bank. It was
found that two-dimensional pairwise potentials could charac-
terize appropriately the distance and angle profiles of halogen
bonding, which is superior to one-dimensional pairwise poten-
tials. With comparison to six widely used scoring functions,
XBPMF was evaluated to have moderate power for predicting
protein-ligand interactions in terms of “docking power”,
“ranking power” and “scoring power”. Especially, it has a
rather satisfactory performance for the systems with typical
halogen bonds. To the best of our knowledge, XBPMF is the
first halogen bonding scoring function that is not dependent on
any dummy atom, and is practical for high-throughput virtual
screening. Therefore, this scoring function should be useful for
the study and application of halogen bonding interactions like
molecular docking and lead optimization.

Keywords Halogen bonding .Knowledge-based scoring
function . Potential ofmean forces . Protein-ligand interaction .
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Introduction

In recent years, halogen bonding (XB), a non-covalent interac-
tion, has attracted the interest of many chemists and structural
biologists [1–17]. As reported, organic halogens display an
anisotropic charge distribution, with an equatorial ring of neg-
ative charge and a region of positive charge, namely theσ-hole,
along the extension of the R-X bonds [11, 18–22]. Thus, XB is
a directional attraction occurring between σ-hole of a halogen
atom and a nucleophilic region of another atom, whichmakes it
an important and specific non-covalent interaction in many
fields including drug discovery and development [14, 23].

Lots of launched drugs are halogenated compounds, and the
halogen atoms are now intentionally introduced in new bioac-
tive entities, owing to the ubiquitous nature of halogens, such as
increasing the binding affinity and membrane permeability,
facilitating the blood–brain barrier crossing and prolonging
the lifetime of the drug, and so on [12, 24–26].

Dobes et al. reported that semiempirical quantummechanical
method PM6-DH2X described the geometry and energetics of
CK2-inhibitor complexes involving halogen bonds well, while
the Amber empirical potentials failed [27]. Indeed, molecular
mechanics methods characterize halogens as negatively-charged
atoms without anisotropic profile, therefore, they are unable to
correctly describe halogen bonding interaction. Recently, some
approaches were developed to describe the σ-holes [28–33] by
introducing a positively-charged and optionallymassless dummy
atom. Nevertheless, all these approaches were implemented in
molecular mechanical force fields, aiming at studying the dy-
namic behavior of macromolecules, which are not practical for
high-throughput virtual screening due to limited transferability of
molecular mechanics force fields, resulting from parameteriza-
tions on specific systems. More recently, Kolář and Hobza et al.
successfully incorporated a molecular-mechanical approach into
a docking program suite for the first time [34], which represents
the σ-hole with a dummy positive charge as well. Intuitively, to
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introduce extra dummy atoms equals to an increase of extra
degrees of freedom. Furthermore, proper parameterization of
the location and the charge of the extra atoms would be chal-
lenging owing to the complexity of halogenatedmoieties and the
diversity of possible extra atom construction schemes [31]. To
introduce an extra atom is a good way to research σ-holes (e.g.,
halogen bond), but not the only one. Indeed, Carter et al. have
developed a set of force-field based potential functions, which
are independent of extra dummy atoms, to properly model the
anisotropic structure-energy relationships for halogen bonding
[35]. However, to the best of our knowledge, there are no scoring
functions that describe halogen bonding well, which does not
depend on an extra dummy atom and is practical for high-
throughput virtual screening at the same time. Thus, it is of
interest to develop a scoring function to deal with halogen
bonding without introducing any dummy atom.

Current scoring functions can be generally classified into
three groups: (i) force-field-based [34, 36–39]; (ii) empirical
[40–46]; and (iii ) knowledge-based [47–53]. The first two
groups of scoring functions are highly dependent on systematic
parameterizations on diverse systems. Although many studies
have been completed during the last few decades [1, 6–13, 17,
22, 26, 29, 30, 33, 34, 54–56], we still have limited understand-
ings about distance and angle preferences of halogen bonding.
Different from the first two groups of scoring functions,
knowledge-based scoring functions can model the behavior
observed in experimentally determined structures through in-
ference of interaction energy landscapes directly from protein-
ligand complexes without any knowledge of other information,
and thus are expected to be general.

The fundamental strategy of knowledge-based scoring func-
tion is to convert structural information from protein-ligand
complexes into distance-dependent pairwise potentials. How-
ever, halogen bonding is both distance- and angle-dependent
that is similar to hydrogen bonding (HB), therefore, only
distance-dependent potentials (1D potential) can not fully char-
acterize the directionality of a XB or a HB. Hence, a multidi-
mensional statistical approach should be employed to study the
geometric and energetic preferences of XB [57]. However,
there exists an inherent limitation for knowledge-based scoring
function because it involves calculation of an ideal reference
state, which is theoretically not achievable [58]. In order to
circumvent this problem, an iterative method is usually applied
to extract the interaction potentials [50, 51, 59].

In this study, we combined the iterative method with the
multidimensional statistical model to develop a knowledge-
based scoring function based on two high-quality training
datasets of protein-ligand complexes. XBs and HBs are char-
acterized by two-dimensional (2D) potentials for various atom
types, and the characteristics of their 2D potentials were
discussed in order to compare the geometric and energetic
preferences of halogen and hydrogen bonding. Subsequently,
the scoring function based on the derived potentials, termed

XBPMF, was evaluated using a test set with binding affinities
and compared to six popular scoring functions. The evalua-
tions demonstrated that the new scoring function is of moder-
ate power for predicting halogen bonding interaction. Thus,
the scoring function should be able to facilitate the study and
application of halogen bonding.

Materials and methods

Preparation of protein-ligand complexes

A large set of crystal structures of protein-ligand complexes are
available in the Protein Data Bank (PDB) [60], hereby serving
as the source of our training datasets. Since not all the crystal
structures are qualified enough for the purpose of pairwise
potential extraction, a number of filters were applied to select
the qualified structures:

(1) It must be experimentally determined by X-ray diffraction.
(2) Resolution is better than 3.0 Å.
(3) No DNAs, RNAs or multiple models are included in the

crystal structure.
(4) Complexes with severe steric clashes (here, steric clash

distance threshold is set as 1.75 Å) are also discarded.
(5) The crystal structure should be composed of at least one

protein and one valid ligand. For an entry including one
protein and multiple ligands, each ligand and the protein
were reassembled as a discrete complex; for an entry
including identical ligands in duplicate chains, only the
first one was kept.

(6) A valid ligand must fulfill the following criteria: (i ) it is
not covalently bound to any protein or other ligands; (ii )
it should not contain any metal atoms or other uncom-
mon elements, such as B, Si, Se, etc. ; (iii ) it should not
be a part of solvent, cofactor, coenzyme or buffer; and
(iv ) it can be an oligopeptide with less than eight
residues.

Proteins in the extracted complexes were prepared by
Schrödinger software package (version: 2010). Specifically,
missing atoms or residues were amended if necessary; all
hydrogens in the original PDB file were removed and
readded; all waters were retained; all hydrogens were opti-
mized by Protassign module for appropriate protonation and
tautomerization states of His residues and appropriate “chi-
flips” conformations in Asn, Gln and His residues. Ligands
were prepared by OpenBabel (version: 2.3) [61] for adding
hydrogens.

Preparation of ligand decoy sets of the training sets

The key idea of an iterative method is to tune the pairwise
potentials by iteration until they can discriminate native binding
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poses from decoy ligand poses, therefore, a diverse set of
decoys for the ligands in the training sets were needed.
AutoDock (version: 4.2) [62] was used in this study to generate
50 decoy poses (including the native binding pose) for each
ligand in the training sets.

Derivation of pairwise potentials

Iterative method to tune potentials

Since the ideal reference state is not achievable for knowledge-
based scoring function [58], an iterative method was intro-
duced to circumvent this problem [50, 51, 59]. Based on the
assumption of pairwise additivity of atomic interactions, the
pairwise potentials were iteratively adjusted using a training
set of protein-ligand complexes with a set of decoys for
each ligand.

At the beginning, a set of initial values, uij
(0)(r,θ), for all the

pairwise potentials was calculated (see the section: Derivation
of the initial potentials), where i and j represent a protein atom
type and a ligand atom type, respectively, r is the distance
between the two atoms, and θ is the angle of a halogen bond
(R-XBD···XBA) or hydrogen bond (HBD-H···HBA) (XBD:
halogen bonding donor; XBA: halogen bonding acceptor;
HBD: hydrogen bonding donor; HBA: hydrogen bonding ac-
ceptor). At the n-th iteration, the binding score, UXBPMF

(n) , of
every ligand pose for every complex in the training set was
calculated by

U nð Þ
XBPMF ¼ U nð Þ

XB þ U nð Þ
HB þ U nð Þ

1D ¼
X

i¼1;⋯;NP; j¼1;⋯;NL

u nð Þ
ij r; θð Þ;

ð1Þ

where UXB
(n), UHB

(n ) and U 1D
(n ) are the sum of the pairwise

potentials for halogen bonding, hydrogen bonding and other
1D potentials, respectively. NP and NL denote number of
protein atoms and ligand atoms, respectively, and uij

(n)(r,θ)
is the pairwise potential for protein atom i and ligand atom j at
the n -th iteration.

Then, the best-scored ligand pose was identified for each
complex. If the following criterion converges, the iteration
stops.

η ¼ 1

M

XRMSDm<2

m

1 > η0; ð2Þ

where M is the number of complexes in the training set, and
RMSDm is the root-mean-square-derivation between the best-
scored ligand pose and the native ligand pose for the m -th
complex. If RMSD is less than 2 Å, it was recorded as a
success. η represents the success rate and η0 is the predefined
convergence threshold.

The pairwise potentials were updated through the iterative
process as

u nþ1ð Þ
ij r; θð Þ ¼ u nð Þ

ij r; θð Þ þ λkBT g nð Þ
ij r; θð Þ−gobsij r; θð Þ

� �
; ð3Þ

where λ is a parameter to control the convergence rate, kB is
the Boltzmann constant, and T is the temperature. gij

obs(r,θ) is
the experimentally observed pairwise distribution function for
the native ligand pose in the training set and gij

(n)(r,θ ) is the
predicted pairwise distribution function at the n -th iteration
(see the section: Derivation of 2D halogen-bonding and
hydrogen-bonding potentials).

At each iteration, the pairwise potentials were updated and
the convergence criterion (Eq. (2)) was checked. A final set of
pairwise potentials for the prediction of protein-ligand inter-
actions were obtained till the convergence criterion was
satisfied.

Derivation of 2D halogen-bonding and hydrogen-bonding
potentials

The most widely used statistical model [49] is to extract
distance-dependent potentials from crystal structures, which
is a 1D model with only one degree of freedom. While both
halogen bonding and hydrogen bonding interactions are
distance- and angle-dependent, a 1D model is not suitable,
thus a 2D model is inferred in a similar way as reported by
Zheng et al. [57]. Another degree of freedom is designed for
halogen bonding and hydrogen bonding, which is R-
XBD···XBA or HBD-H···HBA angle (θ). Therefore, for those
atom type pairs that can not form a XB or a HB, the extra
degree of freedom is automatically lost. In other words, those
atom type pairwise potentials were calculated as 1DMuegge’s
model [49].

In the 2D model, the experimentally observed pair distri-
bution function gij

obs(r,θ ) was calculated as:

gobsij r; θð Þ ¼ ρobsij r;θð Þ
.
ρobsij;bulk r; θð Þ; ð4Þ

where ρ ij
obs(r,θ ) is the number density of the pair of atoms i

from protein and j from ligand at specific distance r and angle
θ , and ρ ij,bulk

obs (r,θ ) is the number density in a reference sphere
of radius Rmax (Rmax=10 Å). In order to calculate the number
densities for halogen bonding and hydrogen bonding interac-
tions, the surrounding three-dimensional (3D) space of a
halogen bonding donor (XBD) or a hydrogen donated by a
hydrogen bonding donor is radially divided into multiple
spherical bins (geometrical parameters for a bin are Δr =
0.1 Å and Δθ =5°). The volume V (r, θ) of a bin at specific
distance r and angle θ is calculated as

V r; θð Þ ¼ 4

3
π r þΔrð Þ3−r3
� �

sin θþ Δθ
2

� �
sin

Δθ
2

: ð5Þ
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So the number densities ρ ij
obs(r ,θ ) and ρ ij ,bulk

obs (r ,θ ) were
calculated as

ρobsij r; θð Þ ¼ 1

M

X
m

M nmij r; θð Þ
V r; θð Þ ð6Þ

ρobsij;bulk r; θð Þ ¼ 1

M

X
m

M Nm
ij

V Rmaxð Þ ð7Þ

V Rmaxð Þ ¼ 4

3
πR3

max; ð8Þ

where n ij
m(r ,θ ) and Nij

m are the numbers of atom pair ij in
the spherical bin and the reference sphere for the m -th
experimentally observed complex, respectively, and V (Rmax)
is the volume of the reference sphere.

Based on the decoys for each ligand in each complex,
the predicted pairwise distribution function g ij

(n )(r ,θ ) was
calculated as

g nð Þ
ij r; θð Þ ¼ ρ nð Þ

ij r;θð Þ
.
ρ nð Þ
ij;bulk r; θð Þ; ð9Þ

where number densities ρ ij
(n)(r,θ ) and ρ ij ,bulk

(n) (r,θ) at the n -th
iteration were calculated over different decoys as follows:

ρ nð Þ
ij r; θð Þ ¼ 1

ML

X
m

M X
l

L nmlij r; θð Þe−βU nð Þ
ml

V r; θð Þ ð10Þ

ρ nð Þ
ij;bulk r; θð Þ ¼ 1

ML

X
m

M X
l

L Nml
ij e

−βU nð Þ
ml

V Rmaxð Þ ð11Þ

β ¼ 1
�
kBT

; ð12Þ
where L is the number of decoys for each ligand prepared by
AutoDock, and nij

ml(r,θ) and Nij
ml are the numbers of the atom

pair ij in the spherical bin and the reference sphere for the l -th
decoy of the m -th complex, respectively. Uml

(n ) was the
binding score of the l-th decoy of them -th complex calculated
by Eq. (1).

Derivation of the initial potentials

For the iterative process in Eq. (3), the initial pairwise poten-
tials uij

(0)(r,θ ) needed to be assigned, which were defined as
extracted potentials wij(r,θ ) from experimentally observed
complexes in the training set.

wij r; θð Þ ¼ −kBT lngobsij r; θð Þ: ð13Þ
We ignored the potentials of the atom type pairs whose

occurrences were statistically insufficient (<500) [50], in other
words, the pairwise potentials wij(r,θ ) or uij

(n+1)(r,θ) for low
occurrences were set to zero. And if no atom type pair ij was
found in a certain spherical bin, the corresponding potential in

this bin was set to 3 kcal mol−1 [49, 50, 57] as an unfavorable
interaction.

As indicated by Huang et al. [50, 51], an effective short-
distant repulsive component was necessary for avoiding steric
clashes, therefore, we adopted the same repulsive component
as Huang et al. . The Lennard-Jones 6–12 potentials, v ij(r,θ ),
were introduced in Eq. (14),

vij r; θð Þ ¼ εr12eqm
r12

−
2εr6eqm
r6

; ð14Þ

where the equilibrium radii reqm were taken from the AMBER
force filed [63] and the well depths ε were set to three times of
the corresponding value in the AMBER force field [50]. In
order to remove possible fluctuations in large distances, the
initial potentials were set to zero when the distance was larger
than rc=6 Å. Therefore, the initial potentials uij

(0)(r,θ ) were
calculated as

u 0ð Þ
ij r; θð Þ ¼

wij r; θð Þ r≤rc for XB&HB pairs
vij r; θð Þe−vij r;θð Þ þ wij r; θð Þe−wij r;θð Þ

e−vij r;θð Þ þ e−wij r;θð Þ r≤rc for 1D pairs

0 r > rc for all

8><
>:

:

ð15Þ

Preparation of test set

In order to evaluate the scoring function in this study, we
selected a diverse set of 162 protein-ligand complexes with
binding affinities from the PDBbind database (version: 2012)
[64, 65] as the primary test set, in which all the ligands are
halogenated (including Cl, Br or I). There are over 9000
protein-ligand complexes with binding affinities in PDBbind
database. Before preparing the primary test set, systematic
mining and filtering were implemented, which were summa-
rized as follows:

(1) Ligand in the complex must contain at least one halogen,
such as Cl, Br or I, since the knowledge-based scoring
function we developedwas designed for halogen bonding.

(2) Resolution is better than 2.5 Å.
(3) Only the protein-ligand complexes with known dissoci-

ation constants (Kd) or inhibition constants (Ki) were
considered.

(4) Ligand is not covalently bound to the protein.
(5) There should be only one protein and one ligand in the

complex.
(6) Ligand contains no uncommon elements, such as B, Si,

Se, etc.
(7) Molecular weight of the ligand should not exceed 1000.
(8) Oligopeptide with less than eight residues and oligonu-

cleotides with no more than three residues are also con-
sidered as valid ligands.

(9) Protein in the complex must be complete.
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In order to evaluate the powers of the scoring function
more pertinently, we selected a subset of complexes in which
typical halogen bonds formed. We obtained two secondary
test subsets: TestSet-S1 (halogen bond distance <=3.5 Å, hal-
ogen bond angle >=140°, size: 24) and TestSet-S2 (halogen
bond distance <=3.2 Å, halogen bond angle >=140°, size: 7).
In addition, in order to evaluate the “ranking power” (refer to
“Evaluation methods” section for details) of the scoring
function, 162 complexes in the primary test set were clustered
with a sequence similarity cutoff of 90 %. Eight clusters with
no less than five members were extracted for Spearman
correlation analysis, which were carbonic anhydrase II (CA,
size: 13), casein kinase-1 (CK, size: 9), coagulation factor X
(CFX, size: 16), heat shock protein 90-alpha (HSP, size: 12),
human immunodeficiency virus protease (HIVP, size: 6),
tyrosine-protein phosphatase non-receptor type 1 (TPPNRT,
size: 12), beta-trypsin (BT, size: 16), and urokinase-type
plasminogen activator (UTPA, size: 5).

Besides, a set of decoys for each ligand in the primary test
set were necessary to be prepared for evaluating the “docking
power” of a scoring function (see “Evaluation methods” for
details). In order to sample the binding poses of a ligand as
completely as possible, three molecular docking tools, includ-
ing Glide in Schrödinger (version: 2010), AutoDock (version:
4.2) [62] and Dock (version: 6.5) [66, 67], were used to
generate the initial set of decoy poses. For each ligand, two
initial conformations were prepared before implementing a
docking job, including the native conformation in the crystal
structure and a random conformation outside the binding
pocket. In this regard, about 200 binding poses for each ligand
were generated for each docking tool, resulting in an initial set
of ∼600 binding poses for each ligand. Then, the ∼600 bind-
ing poses were clustered into 100 clusters according to the
RMSD of the native binding pose. The non-covalent interac-
tion energies between each pose and its receptor were calcu-
lated by SYBYL, and then the pose with the lowest energy in
each cluster was extracted to compose the decoy set for each
complex. Therefore, 100 nonredundant and low-energy bind-
ing poses of the ligand for each complex were generated.

In addition, some scoring functions are sensitive to steric
clashes because there are some repulsive terms in the func-
tions, so it is quite possible that unexpected binding scores
might be computed for some complexes. To address this
problem, all the complexes in the three test sets were opti-
mized by SYBYL with the protein fixed. Therefore, two
separate results based on the original and optimized com-
plexes were evaluated and discussed.

Evaluation methods

The evaluation for our scoring function was performed with
the methods developed by Wang et al. [68], which were
“docking power”, “ranking power” and “scoring power”.

Docking power

The ability to identify the native binding pose from a couple of
decoys is defined as “docking power”. The scoring function
was utilized to score all the decoys for each complex in the test
set, and the RMSD between each decoy and the native binding
pose was calculated. If the RMSD for one of the best-scored
decoys was less than a threshold, for example, 2.0 Å, a
success was counted. Finally, the overall success rate on
the test set was measured as the docking power of the
scoring function.

Ranking power

The ability to reproduce the rank of a couple of ligands bound
to a common protein according to their binding affinities is
defined as “ranking power”. As described earlier, we extracted
eight clusters of protein-ligand complexes. Each cluster
consisted of a number of complexes formed between a protein
and its various ligands with different binding affinities. The
scoring functions were applied to score each complex in the
eight clusters, and then a Spearman correlation analysis was
implemented to examine whether the rank of the binding
scores for all the complexes in each cluster was consistent
with their binding affinities. The larger the Spearman correla-
tion coefficient, the stronger the “ranking power” of the scor-
ing function. Spearman correlation coefficient of “1” stands
for identical order between the rank of the binding scores and
the binding affinities of all the complexes, while “-1” repre-
sents a totally reversed order.

Scoring power

The ability to correlate the predicted binding scores and the
experimentally determined binding affinities of a diverse set
of complexes in a linear way is defined as “scoring power”.
The scoring power of each scoring function on three test sets,
which were the primary test set and the two typical halogen
bonding sets (TestSet-S1, TestSet-S2), was measured by the
Pearson correlation coefficient between the binding scores and
the binding affinities of all the complexes. There are some
cases that scoring functions fail to compute a favorable score
for a specific protein-ligand complex due to various reasons,
in these cases the complex would not be counted in the
Pearson correlation analysis.

Results and discussion

Training sets of protein-ligand complexes

Through a couple of filtering steps, a total of 31,145 com-
plexes were obtained from the Protein Data Bank, among
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which 1591 complexes have halogenated ligands. In order to
analyze the possible effects of different training sets on the
extracted pairwise potentials, two separate training sets were
prepared: one, namely TrainingSet-1, consisted of all 1591
halogenated complexes, and the other, namely TrainingSet-2,
consisted of all 31,145 complexes. In addition, we adopted
a set of atom types (see Tables S1 and S2 in Supporting
information), which is an updated version of Muegge’s
atom types [49], including 17 protein atom types and 31
ligand atom types.

Extracted pairwise potentials

Before extracting the pairwise potentials, occurrences of all
the possible atom type pairs were recorded. For good statistics,
the pairwise potentials of only those atom type pairs whose
occurrences were no less than 500 (log10500≈2.70) were
retained. Thus, based on TrainingSet-1, there were 321 pairs
of effective 1D potentials, 28 pairs of effective 2D HB poten-
tials and 15 pairs of effective 2D XB potentials. Likewise,
based on TrainingSet-2, there were 378 pairs of effective 1D

Table 1 Logarithm of selected
HB and XB donor-acceptor
pair occurrences in two
training sets

Refer to Tables S1 and S2 for
explanations of the names of the
protein atom types and the ligand
atom types

log10(Nij) Protein HB donor atom type (i)

TraningSet-1 TrainingSet-2

NC ND OD SD NC ND OD SD

Ligand HB acceptor atom type (j) OA 3.60 4.51 3.73 3.05 4.81 5.66 4.89 3.93

OD 3.46 4.70 3.92 2.69 5.24 6.37 5.58 4.21

NA 2.10 3.06 2.29 1.34 3.01 3.92 3.18 2.27

ND 3.44 4.75 3.92 2.95 4.46 5.71 4.91 3.76

N0 1.98 3.20 2.23 1.04 2.53 3.67 2.72 1.70

SA 2.76 3.79 2.96 2.49 3.64 4.65 3.86 3.00

log10(Nij) Ligand HB donor atom type (j)

NC ND OD SD NC ND OD SD

Protein HB acceptor atom type (i) OC 3.18 3.68 3.60 0.95 4.37 4.68 5.36 3.27

OA 3.76 4.41 4.35 1.83 4.95 5.36 6.02 4.02

OD 3.13 3.92 3.92 0.95 4.28 4.91 5.58 3.23

NA 2.37 3.09 3.10 0.60 3.75 4.11 4.87 2.85

ND 3.81 4.75 4.70 1.91 5.00 5.71 6.37 4.06

SA 2.26 2.89 2.90 NA 3.39 3.82 4.38 2.47

log10(Nij) Ligand XB donor atom type (j)

Cl Br I

Protein XB acceptor atom type (i) OC 3.65 3.10 2.77

OA 4.54 3.97 3.66

OD 3.73 3.10 2.84

NA 3.33 2.75 2.33

ND 4.58 4.00 3.69

SA 3.13 2.45 2.33

Fig. 1 Convergence parameter η
as a function of the iteration step
based on (a) TrainingSet-1 and
(b) TrainingSet-2
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Fig. 2 Heat maps of 2D XB potentials for four selected donor-acceptor
pairs based on TrainingSet-2: (a), (e), (i) OA-Cl; (b), (f), (j) OA-Br; (c),
(g), (k) OA-I; (d), (h), (l) OC-Cl. R1-R6 stand for favorable interaction
regions. The four- or five-letter code, e.g., OA-Cl, refers to the atom type
pair, where the letters before the dash, OA, refer to protein XB acceptor

atom type, and the letters after the dash, Cl, refer to ligand XB donor atom
type. (a)-(d) are heat maps of 2D XB potentials extracted from observed
complexes before iteration starts; (e )-(h ) are heat maps of 2D XB
potentials at the first iteration; and (i )-(l) are heat maps of 2D XB
potentials at the converged iteration

J Mol Model (2013) 19:5015–5030 5021
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potentials, 40 pairs of effective 2D HB potentials and 15 pairs
of effective 2D XB potentials. Based on the two training sets,
the occurrences of selected HB and XB donor-acceptor pairs
in logarithm scale were listed in Table 1.

The convergence parameters η , defined in Eq. (2), based on
the two training sets are shown in Fig. 1. As for the smaller
TrainingSet-1, the convergence parameter rapidly reached
99 % in five iterations (Fig. 1a), while for the bigger
TrainingSet-2, the convergence parameter converged at
∼75 % quickly as well (Fig. 1b), indicating that the majority
of native binding poses of the protein-ligand complexes in the
training sets were successfully identified based on the
extracted pairwise potentials. Besides, fast convergence also
demonstrated the effectiveness of our method.

Eventually, three representative sets of extracted pairwise
potentials were selected for evaluation, termed XBPMF1,
XBPMF2 and XBPMF3, respectively. XBPMF1 is the
extracted potentials based on TrainingSet-1 at the converged
iteration, while XBPMF2 and XBPMF3 are the extracted
potentials at the first and the converged iterations, respective-
ly, based on TrainingSet-2.

Characteristics of 2D halogen bonding potentials

Heat maps of 2D halogen bonding pairwise potentials for four
atom type pairs based on TrainingSet-2 are shown in Fig. 2
(refer to Fig. S1 in Supporting information for the heat maps
based on TrainingSet-1). In order to analyze what changed
and what resulted in the convergence during the iteration
process, all the pairwise potentials at the native state
(Fig. 2a-d), the first iteration (Fig. 2e-h) and the converged
iteration (Fig. 2i-l) were displayed. In general, during the
iteration process, the minimal potentials of favorable XB pairs
(deep blue region) was enlarged from −3∼−7 kcal mol−1 to
−30∼−40 kcal mol−1 for all four atom type pairs. Similar
trends were observed in the heat maps of 1D (Fig. S2) and
HB (Fig. 3) pairwise potentials, indicating that the iteration
process could enhance the discrimination capability between
the favorable (negative potential) and unfavorable interactions
(positive potential). For example, Fig. 2a and i show that the
potential threshold for a strong halogen bonding interaction
between OA (oxygen as XB acceptor) and Cl (chlorine as XB

donor) was about −2 kcal mol−1 and −30 kcal mol−1, respec-
tively, and likewise for the other three atom type pairs (OA-Br,
OA-I, OC-Cl). In addition, the favorable region (blue region)
shrunk for the four atom type pairs during the iteration
process, demonstrating that the iterative pairwise potentials
became more sensitive to geometric location (interaction
distance and angle) between the two interaction atom types.

Figure 2i depicts the halogen bonding interactions between
OA (oxygen as XB acceptor) and Cl (chlorine as XB donor) at
the converged iteration. If the threshold for a halogen bond is
set to −25 kcal mol−1, the favorable halogen bonding region is
restricted to a small region R1: distance [2.6 2.8] Å, angle
[165° 180°], and similar results were obtained for atom type
pairs OA-Br (Fig. 2j) and OA-I (Fig. 2k) (Table 2), demon-
strating that halogen bonding is angle-dependent and consis-
tent with the anisotropic charge distribution of halogens. In
addition, with the decrease of the R-XBD XBA angle, the
repulsive region (potential: 3 kcal mol−1) grows bigger and
bigger, which also agrees well with negative charge distribu-
tion around the equatorial region of halogens. Thus, 2D
pairwise potential is superior to 1D potential for properly
characterizing halogen bonding.

As shown in Table 2, the geometric and energetic param-
eters of optimal interaction for OC-Cl is different fromOA-Cl,
OA-Br and OA-I, which could be attributed to the complicat-
ed interaction that the negatively charged OC is involved in
which is not only halogen bonding interaction but also elec-
trostatic interaction with Cl. Apparently, there is only one
favorable interaction region between neutral XB acceptor
and donor, for example, R1 region in Fig. 2i, R2 region in
Fig. 2j, and R3 region in Fig. 2k, which should be caused by
the angular preference of halogen bonding. However, Fig. 2l
revealed three favorable regions (R4, R5 and R6), which is
possibly caused by long-range electrostatic interaction be-
tween OC and Cl. Table 3 summarizes the mean potentials
of selected XB atom type pairs at statistically effective regions
(occurrences >=500, potential <3.0 kcal mol−1, distance
<=6.0 Å). Interestingly, the pairwise potentials have an order
of OA-Cl>OA-Br>OA-I, which is consistent with the reported
results: the strength of the interaction decreases in the follow-
ing order I>Br>Cl [11]. Meantime, strengthened by attractive
electrostatic interaction, the mean pairwise potential of OC-Cl
is comparable to OA-I.

Characteristics of 2D hydrogen bonding potentials

Heat maps of 2D hydrogen bonding pairwise potentials
for five atom type pairs based on TrainingSet-2 are shown
in Fig. 3 (refer to Fig. S3 in Supporting information for the
heat maps based on TrainingSet-1). For neutral atom pairs:
ND-OA (Fig.ure 3k) and OD-OA (Fig. 3l), the favorable
hydrogen bonding region is restricted to R1 (threshold:
-25 kcal mol−1, distance ∈ [2.1 2.6] Å, angle ∈ [160° 180°])

�Fig. 3 Heat maps of 2D HB potentials for five selected donor-acceptor
pairs based on TrainingSet-2: (a), (f), (k) ND-OA; (b), (g), (l) OD-OA;
(c), (h), (m) NC-OA; (d), (i), (n) OD-NC; (e), (j), (o) OC-NC. R1-R8
stand for favorable interaction regions. The five-letter code refers to the
atom type pair, where the letters before the dash refer to protein HB donor
atom type, and the letters after the dash refer to ligand HB acceptor atom
type. (a)-(e) are heat maps of 2D HB potentials extracted from observed
complexes before iteration starts; (f )-(j ) are heat maps of 2D HB
potentials at the first iteration; and (k)-(o) are heat maps of 2D HB
potentials at the converged iteration
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and R2 (threshold: -30 kcal mol−1, distance ∈ [2.1 2.5] Å,
angle ∈ [155° 180°]), respectively. The geometric and ener-
getic parameters of the most preferred hydrogen bonding
interactions for five atom type pairs were summarized in
Table 2. Linear interaction is preferred, and the repulsive
region (potential: 3 kcal mol−1) gradually expands with the
decrease of HBD-H HBA angle, clearly reflecting the angular
preference of hydrogen bonding.

Comparatively, heat maps of NC-OA (Fig. 3m), OD-NC
(Fig. 3n) and OC-NC (Fig. 3o) are different from the
aforementioned two neutral atom pairs. Multiple favorable
regions can be identified, for example, R3 and R4 in
Fig. 3m, R5 and R6 in Fig. 3n, R7 and R8 in Fig. 3o.
But the repulsive regions almost did not change with the
decrease of HBD-H HBA angle, which might be caused
by both hydrogen bonding and electrostatic interaction

Table 2 Geometric and energetic parameters of optimal interactions of selected XB and HB atom type pairs at the converged iteration

Atom type pair TrainingSet-1 TrainingSet-2

Angle (°) Distance (Å) Min_potential
(kcal mol−1)

Angle (°) Distance (Å) Min_potential
(kcal mol−1)

Geometric and energetic parameters of optimal XB interaction

OA-Cl 175 2.65 −8.408 175 2.65 −34.578
OA-Br 180 2.85 −14.612 180 2.85 −40.533
OA-I 180 2.75 −13.701 180 2.75 −40.347
OC-Cl 180 5.15 −8.617 130 2.35 −35.830

Geometric and energetic parameters of optimal HB interaction

ND-OA 180 2.65 −11.732 180 3.05 −38.060
ND-OAα 180 2.35 −34.238
OD-OA 180 2.55 −14.244 180 2.35 −41.048
NC-OA 180 2.65 −13.991 180 2.45 −38.371
OD-NC 175 2.95 −11.236 165 2.35 −34.878
OC-NC 10 2.95 −11.160 170 2.45 −35.166
OC-NCβ 170 2.55 −10.677

Refer to Tables S1 and S2 for explanations of the names of the atom types
α Interaction parameters of another optimal spot for ND-OA pair based on TrainingSet-2, which is similar to the parameters of other atom type pairs (OD-
OA, NC-OA, OD-NC, OC-NC) based on TrainingSet-2
β Interaction parameters of another optimal spot for OC-NC pair based on TrainingSet-1, which is similar to the parameters of other atom type pairs (ND-
OA, OD-OA, NC-OA, OD-NC) based on TrainingSet-1

Table 3 Mean pairwise poten-
tials of statistical spherical bins of
selected XB and HB atom type
pairs at the converged iteration

Refer to Tables S1 and S2 for
explanations of the names of the
atom types

Statistical region: occurrences >=500, potential <3 kcal mol−1, distance <=6.0 Å

Atom type pair TrainingSet-1 TrainingSet-2

Sum
(kcal mol−1)

#Spherical
bin

Mean
(kcal mol−1)

Sum
(kcal mol−1)

#Spherical
bin

Mean
(kcal mol−1)

Halogen bonding

OA-Cl −30.36 710 −0.043 −1238.94 560 −2.212
OA-Br −394.24 469 −0.841 −2089.82 382 −5.471
OA-I −638.74 343 −1.862 −2294.18 319 −7.192
OC-Cl −684.49 399 −1.716 −2604.92 351 −7.421

Hydrogen bonding

ND-OA −132.61 903 −0.147 −1015.70 1006 −1.010
OD-OA −932.41 591 −1.578 −1823.75 917 −1.989
NC-OA −1431.37 871 −1.643 −3096.35 1171 −2.644
OD-NC −1223.85 344 −3.558 −2991.82 847 −3.532
OC-NC −1889.88 550 −3.436 −2995.66 995 −3.011
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since at least one atom in all three pairs is charged. R4 in
Fig. 3m, R5 in Fig. 3n and R7 in Fig. 3o are hydrogen
bonding regions, while R3 in Fig. 3m, R6 in Fig. 3n and
R8 in Fig. 3o are caused by electrostatic interaction rather
than hydrogen bonding interaction. Among Fig. 3c, d and
e, the minimal potential of OC-NC (−7.08 kcal mol−1) is
deeper than those of NC-OA (−6.40 kcal mol−1) and OD-
NC (−5.54 kcal mol−1), suggesting that there is a synergic
effect between attractive electrostatic and hydrogen bonding
interaction. The mean potentials of selected HB atom type
pairs at statistical regions at the converged iteration are sum-
marized in Table 3. General trends in the native state were
basically maintained. Apparently, halogen and hydrogen
bonding share similar geometric and energetic preferences,
and both are specifically directional interactions.

Evaluation of scoring functions

Six widely used scoring functions were comparatively
assessed with XBPMF, including the four scoring functions
(LigScore [69], PMF [49], PMF04 [70], and Jain [40])
implemented in Discovery Studio software (version: 3.0),
GlideScore [41, 42, 44] in Schrödinger software (version:
2010) and DrugScore [48, 52, 53]. Three scoring functions
have multiple variants: LigScore (LigScore1 and LigScore2),
GlideScore (GlideScore-SP and GlideScore-XP) and XBPMF
(XBPMF1, XBPMF2 and XBPMF3). All these variants were
evaluated in this study. In addition, different scoring functions
generate scores in different units and different signs, hereby,
binding scores generated by LigScore, PMF, PMF04 and Jain
were reversed as negative scores for the sake of convenience.

Fig. 4 Comparison of the
success rates of selected scoring
functions on the primary test set
and TestSet-S1 considering top 1,
5 and 10 poses, when the rmsd
cutoff is 1.0 Å (blue bar), 2.0 Å
(green bar) or 3.0 Å (red bar),
respectively. Scoring functions
are ranked by the success rates
when the rmsd cutoff is 2.0 Å. (a)
top 1 pose considered on primary
test set; (b) top 5 poses
considered on primary test set; (c)
top 10 poses considered on
primary test set; (d) top 1 pose
considered on TestSet-S1; (e) top
5 poses considered on TestSet-S1;
(f) top 10 poses considered on
TestSet-S1

Fig. 5 Comparison of Spearman
correlation coefficients of selected
scoring functions based on (a)
original protein-ligand complexes
and (b) optimized protein-ligand
complexes
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Docking power evaluation

The straightforward criterion for evaluating the docking pow-
er of a scoring function is whether the scoring function can
discriminate a native binding pose from decoys by assigning
the native pose a best binding score. All the decoys for each
complex in the test set were scored by the selected scoring
functions, and the RMSD between each decoy and the native
binding pose was calculated, and then the overall success rates
for all the scoring functions were calculated. Success rates of
all the selected scoring functions based on two test sets are
shown in Fig. 4. Based on the primary test set, LigScore, Jain,
GlideScore and DrugScore outperform XBPMF, no matter
that the top-1, top-5 or top-10 poses were considered (Fig. 4a-
c). However, XBPMF outperforms PMF and PMF04, indicat-
ing that iterative 2D pairwise potentials were superior to 1D
pairwise potentials on the primary test. Apparently, when more
top-ranked binding poses are considered, success rates of all
scoring functions increase considerably. In particular, when top-
10 binding poses are considered, discrepancy between all se-
lected scoring functions diminishes (Fig. 4c). When the RMSD
cutoff is 2.0 Å, LigScore, Jain, GlideScore, DrugScore and
XBPMF(3) achieve high success rates of over 85 %, and even
to over 90 % when the RMSD cutoff is 3.0 Å, suggesting
that more top-ranked binding poses should be considered
in molecular docking.

When TestSet-S1 was applied (Fig. 4d-f), the ranking of all
the scoring functions changed, especially for XBPMF. When
top-5 or top-10 poses were considered with the RMSD cutoff
of 2.0 Å, XBPMF achieves high success rates of about 80 %
(Fig. 4e) and over 90 % (Fig. 4f), respectively, outranked only
by LigScore. As TestSet-S1 is composed of the complexes
with typical halogen bonds, the above result indicates that
XBPMF is quite suitable for the systems with halogen bond-
ing. In addition, there are some other interesting discoveries
with respect to docking power: (i) GlideScore-XP is more
appropriate than GlideScore-SP for the halogenated ligand, no
matter if there exist halogen bonds or not in the protein-ligand
complex of interest; (ii) Jain might be more appropriate in

tackling the halogenated ligands with no halogen bonds rather
than that with halogen bonds; (iii ) in general, empirical scor-
ing functions might be superior to knowledge-based scoring
functions for halogenated ligands. The possible reasons
might be as follows: (i ) the limited occurrences of XB
donor-acceptor pairs might result in that the pairwise potential
as some specific distances or angles are not so statistically
accurate, so that the scores calculated for some structures
might not be so accurate; (ii ) knowledge-based scoring
functions rely on the geometries observed in the crystal
structures, so that the inherent strength of some individual
interactions in the crystal structures might be masked by
perturbations associated with distortions to the protein or
the ligand.

Ranking power evaluation

Different from discriminating native binding poses from de-
coy poses, the ranking power refers to the ability of correctly
ranking active ligands bound to a common target according to
the order of their binding affinities. As mentioned above, eight
clusters of protein-ligand complexes were prepared. Each
complex in the eight clusters was scored, and then a Spearman
correlation analysis was implemented. Heat maps of Spear-
man correlation coefficients between the experimentally de-
termined binding affinities and the binding scores computed
by selected scoring functions are shown in Fig. 5. The ranking
power evaluation were carried out with the Spearman corre-
lation coefficient cutoff >=0.6 (Table 4). XBPMF outperforms
other scoring functions followed by PMF04 and LigScore. For
carbonic anhydrase II (CA), only XBPMF3 can generate
acceptable results with Spearman correlation coefficient over
0.6 on original complexes, while no scoring functions perform
well for HIV protease (HIVP). For beta-trypsin (BT), PMF04
achieves a Spearman correlation coefficient of 1.0, indicating
that PMF04 correctly ranked all 16 ligands. In addition, PMF,
LigScore and PMF04 perform well on tyrosine-protein phos-
phatase non-receptor type 1 (TPPNRT) with high Spearman
correlation coefficient of over 0.8, so do Jain and GlideScore
on urokinase-type plasminogen activator (UTPA).

Furthermore, moderate correlation between some scoring
functions is observed in Fig. 6 (refer to Fig. S4 and Table S3 in
Supporting information as well). Although different scoring
functions are in different forms, they are essentially used to
characterize some common interactions, such as hydrophobic
contacts, hydrogen bonding, and electrostatic interactions.
Hence, certain intercorrelations are in our expectations to
some extent (Table S3).

Scoring power evaluation

The binding scores of the complexes in the three test sets
were calculated, and the Pearson correlation coefficient

Table 4 Comparison of ranking power of seven scoring functions with
Spearman correlation coefficient cutoff >=0.6

Scoring
function

CA CK CFX HSP HIVP TPPNRT BT UTPA

XBPMF √ √ √ √
PMF04 √ √ √
LigScore √ √ √
Jain √ √
DrugScore √ √
GlideScore √
PMF √
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between the binding scores and the binding affinities was
measured as the scoring power of each scoring function,
and the results were summarized in Table 5. Based on the
primary test set, the results of only three scoring functions, viz.
GlideScore-SP, LigScore2 and DrugScore, are acceptable
with standard deviations of ∼2.00 kcal mol−1 if we set Pearson
correlation coefficient cutoff >=0.4. XBPMF performs
not well on this test set though it is superior to Jain and

scoring functions extracted from 1D pairwise potentials (PMF
and PMF04).

However, when applying two test sets with typical halogen
bonds in the complexes, XBPMF (at least one of XBPMF1,
XBPMF2 and XBPMF3) produced Pearson correlation coef-
ficient of about 0.5 on either original or optimized complexes.
Especially on TestSet-S2 (halogen bond distance <=3.2 Å,
halogen bond angle >=140°), XBPMF is only outranked by

Fig. 6 Intercorrelation
coefficients of selected scoring
functions based on original
protein-ligand complexes of eight
clusters: (a) Carbonic anhydrase
II; (b) Casein kinase-1; (c)
Coagulation factor X; (d) HSP
90-alpha; (e) HIV protease; (f)
Tyrosine-protein phosphatase
non-receptor type 1; (g) Beta-
trypsin; (h) Urokinase-type
plasminogen activator
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GlideScore-SP, and the standard deviation decreased below
1.00 kcal mol−1, suggesting that XBPMF is appropriate for
protein-ligand complexes with halogen bonding.

Conclusions

Based on two training sets of protein-ligand complexes (size
of TrainingSet-1: 1,591, size of TrainingSet-2: 31,145), an
iterative multidimensional knowledge-based halogen bonding

scoring function was developed, termed XBPMF, with three
variants (XBPMF1, XBPMF2 and XBPMF3). The extracted
2D pairwise potentials can characterize appropriately the dis-
tance and angle preferences of halogen bonding and hydrogen
bonding, which agree well with empirical observations or
theoretical computational results. In addition, XBPMF was
evaluated in three aspects: “docking power”, “ranking power”
and “scoring power”, suggesting that the iterative 2D pairwise
potentials are superior to 1D pairwise potential, and XBPMF
are quite appropriate for the protein-ligand complexes, in

Table 5 Correlations between
the experimentally determined
binding constants and the binding
scores computed by selected
scoring functions on three
test sets

a Scoring functions are ranked by
the Pearson correlation coeffi-
cients on the original complexes
b Number of complexes with neg-
ative (favorable) binding scores
by the scoring function
c Pearson correlation coefficients
d Standard deviations in linear
correlation (in kcal mol−1 units)
e Spearman correlation coefficients

Scoring functiona On original complexes On optimized complexes

#entryb Rp
c SDd Rs

e #entry Rp SD Rs

On TestSet (size: 162)

GlideScore-SP 139 0.457 1.980 0.426 159 0.422 2.034 0.394

LigScore2 161 0.445 1.999 0.470 162 0.484 1.947 0.529

DrugScore 162 0.435 2.004 0.460 162 0.440 1.998 0.461

GlideScore-XP 152 0.259 2.176 0.231 161 0.250 2.162 0.230

LigScore1 162 0.223 2.170 0.202 162 0.236 2.163 0.211

XBPMF3 161 0.204 2.185 0.221 161 0.229 2.167 0.196

XBPMF2 161 0.203 2.163 0.201 159 0.161 2.156 0.151

XBPMF1 144 0.201 2.234 0.233 104 0.217 2.281 0.198

PMF 154 0.120 2.248 0.037 154 0.135 2.246 0.053

PMF04 138 0.013 2.282 −0.007 139 0.039 2.351 0.010

Jain 126 −0.057 2.223 0.006 127 −0.006 2.209 0.077

On TestSet-S1 (size: 24)

GlideScore-SP 17 0.733 1.804 0.691 22 0.592 2.167 0.548

LigScore2 24 0.614 2.040 0.566 24 0.661 1.939 0.594

DrugScore 24 0.569 2.125 0.473 24 0.602 2.065 0.535

XBPMF2 24 0.431 2.333 0.424 24 0.541 2.174 0.517

LigScore1 24 0.380 2.391 0.237 24 0.362 2.410 0.217

XBPMF1 21 0.371 2.522 0.368 19 0.529 2.350 0.465

XBPMF3 24 0.342 2.429 0.288 23 0.528 2.205 0.487

GlideScore-XP 21 0.328 2.602 0.374 24 0.239 2.510 0.299

PMF 23 0.234 2.523 0.172 23 0.225 2.529 0.115

PMF04 22 0.116 2.610 0.121 21 0.054 2.667 0.039

Jain 15 0.104 2.716 0.186 15 0.259 2.663 0.232

On TestSet-S2 (size: 7)

GlideScore-SP 6 0.525 0.968 0.657 7 0.679 0.778 0.750

XBPMF2 7 0.495 0.921 0.536 7 0.390 0.976 0.464

XBPMF3 7 0.483 0.928 0.250 7 0.469 0.936 0.357

DrugScore 7 0.427 0.958 0.679 7 0.362 0.988 0.214

LigScore2 7 0.380 0.980 0.714 7 0.482 0.928 0.714

XBPMF1 7 0.364 0.987 0.214 6 0.512 0.977 0.257

GlideScore-XP 6 0.153 1.124 0.257 7 0.137 1.050 0.393

LigScore1 7 0.092 1.055 0.464 7 0.016 1.059 0.286

PMF04 7 0.083 1.056 0.321 7 0.115 1.052 0.321

PMF 7 −0.242 1.028 −0.071 7 −0.207 1.037 −0.036
Jain 1 - - - 1 - - -
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which halogen bonds can be identified. In addition, XBPMF
performs well in ranking active ligands bound to a common
target according to the order of their binding affinities for four
cluster families, viz. carbonic anhydrase II, coagulation factor
X, tyrosine-protein phosphatase non-receptor type 1 and beta-
trypsin. Although the novel halogen bonding scoring function
is by no means perfect, it should help to improve our under-
standing of halogen bonding and provide a more accurate
access to study on some systems with halogen bonds.
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